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AbslnEt. A measure of irregularity in a quantum state lies in the surface mushness of the 
corresponding eigenfunction and shows up as a splitting of contours at successive heights. 
This phenomenon seems to be absent in integrable systems where the states are regular. 
We carry out an analysis based on the semiclassical theory and extend it by a detailed 
numerical investigation which reveals that (i) a Gaussian amplitude distribution and the 
splitting of contours occur together, and (ii) the percentage increase in the number of 
 contour^ with height is a measure of the degree of surface irregularity. Regular, localized 
states in chaotic systems for which good quantum numbers can be assigned do, however, 
show ‘contour splitting’. 

1. Introduction 

Recent advances in the understanding of classical Hamiltonian dynamics have led to 
a reinvestigation of the nature of semiclassical eigenstates in generic quantum systems 
with non-integrable classical analogues. It is now clear that the classification scheme 
conceived by Percival [ 11 in the early 1970s does work. The quantum energy levels in 
systems with a mixed phase space (containing Kolmogorov-Arnold-Moser tori and 
chaotic regions) belong either to a regular or an irregular class. Using ideas of dynamical 
quasidegeneracy, Bohigas et a l [ 2 , 3 ]  have corroborated the above proposition, though 
their studies also reveal the existence of a small percentage of levels with an intermediate 
nature. This, of course, gives rise to an important question: how irregular isan eigensfafe? 
Methods based on eigenvalues such as the one used by Bohigas ef a/ [2] are no doubt 
helpful, but the complexity of an eigenstate really lies in the nature of its eigenfunction 
since we expect the invariant structures of classical mechanics to be reflected in these 
stationary states of the quantum system. In this paper, we provide a visual picture of 
the degree of surface roughness in irregular wavefunctions, an area which is largely 
unexplored to the best of our knowledge. Before proceeding with our investigations, 
however, we take a brief look at some of the commonly used criteria for recognizing 
the nature of an eigenstate. 

Nodal patterns and contour plots are some of the most important tools for distin- 
guishing regular and irregular wavefunctions. In the former case, the patterns are 
quasiperiodic and the regularity is quite evident in sharp contrast to the complex 
structures and avoided crossings that characterize the latter. An irregular pattern, 
however, does not necessarily imply that the underlying classical dynamics is chaotic. 
This issue, initially discussed by Heller [41, has been elaborated by Biswas and Jain 
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[ S I  for eigenfunctions belonging to pseudointegrable systems which are non-chaotic 
in the Lyapunov sense. 

The amplitude distribution, P ( + ) ,  is increasingly being recognized as another 
important criterion and provides a more quantitative picture [S, 61. Recently Biswas 
et d [ 7 ]  used the periodic orbit theory approach to show that P (  $) does have a limiting 
form which closely approximates a Gaussian when the underlying classical dynamics 
is chaotic. The earlier arguments were based on the representation of the eigenfunction 
as an infinite superposition of plane waves with random phases [PI, an idea which is 
essentially an extension of the integrable case. Incidentally, such a picture also leads 
to a spatial correlation function which is isotropic and has a Bessel function dependence 
[ S I .  The prediction, however, has been subjected to a test with reasonable success only 
for the Bunimovich stadium billiard [ 6 ] .  The path correlation function of Shapiro and 
Goelman [9] has also been used to distinguish regular and irregular states but has 
found limited usage. 

The above criterion together with the degree of 'surface roughness' that we seek 
to investigate in this paper, provides a more or less complete picture of the nature of 
irregular eigenfunctions. A rough surface in this context is characterized by the presence 
of one or more local extrema between successive crossings through zero (nodal curves). 
In other words, there are minor humps and valleys which manifest themselves as a 
splitting of contours when sections through successive heights are taken (a closed 
contour at a lower height, l$l, splits into two or more at a larger value of I$I). Some 
of the questions that we shall address are: 

(i) Do quantum mechanical eigenfunctions possess surface roughness? 
(ii) If so, is it peculiar only to eigenfunctions irregular in the usual sense? 
(iii) Can the degree of contour splitting be used as a measure of irregularity? 
The paper is organized along the following lines. Section 2 deals with the semi- 

classical representation of eigenfunctions for the integrable and chaotic cases, using 
which we shall rule out the possibility of surface roughness in separable integrable 
systems and argue in favour of such a possibility when the underlying classical dynamics 
is chaotic. Section 3 is devoted to numerical investigations and helps us to establish 
some of the predictions of the earlier section. Discussions and a summary form the 
concluding section. 

2. Surface roughness and contour splitting-a semiclassical analysis 

2.1. Integrable systems 

We shall confine ourselves mostly to separable integrable systems with two degrees of 
freedom in this subsection and provide a proof for the absence of surface roughness 
in such cases. The ideas can easily be extended to higher degrees of freedom as well. 
As an example of a non-separable system, we shall consider the equilateral triangle 
billiard. 

The eigenfunction for a separable integrable system characterized by the Hamil- 
tonian 

H =&2m +pf /2m+ V ! ( x ! ) +  Vz(xz)  (1) 
= H , + H ,  

can be expressed in the form 

+",," = ,$b(x,),$'.(x*) 
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where +‘(xi) is an eigenfunction of H.. In the semiclassical case where eigenstates 
correspond to classical motion on a torus, the global solution can be expressed as 

$ ‘ ( x ; )  = c , ~ J ~ s , / J x , J I , ~  sin{S,(x,)/h} (3 )  

where 

x, 

. 9 
Sj(xi) = I pi dxj (4) 

~ - 8  

and 1, is the action on the irreducible circuit characterized by the turning points of 
the potential K(x,). 

It is easy to verify that the amplitude J’SJJX,J I ,  has no zero as a function of x,. 
Thus an extremum of (r”,n(~I, x2) occurs at points ( x , ,  x2)  for which 

S , ( x , ) / f i  = ( 2 p + l h / 2  ( 5 a )  

S , ( x , ) / h  = ( Z q + l ) l r / Z .  ( 5 6 )  

It is clear from the quantization conditions 

pt dx, = Zrrn,h i = l , 2  ( 6 )  

(and by considering the points x;  on the turning points) that the maximum number 
of possible extrema are ( n , )  . ( n , ) .  The number of nodal curves (* =0) on the other 
hand are ( n ,  + 1) . (n,+ 1 )  and hence eigenfunctions of separable integrable systems do 
not possess surface roughness. 

n e  proof outlined above can easily be generalized to higher dimensions but cannot 
be extended to non-separable integrable systems. We give here an altemate proof for 
separable systems which is purely quantum mechanical. In such cases, it is sufficient 
to show that an eigenfunction of the I D  Schrodinger equation cannot have undulations 
or humps and valleys. If it does, the second derivative ought to change sign or pass 
through a zero at a point xo where (r is non-zero. It follows from the Schrodinger 
equation, however, that in the classically allowed region, d2g/dx2 cannot be zero 
unless I) itself vanishes while in the region outside, (r rapidly decays. Thus in a 

roughness. 

the semiclassical eigenfunction can still be expressed as a finite sum, 

sep?.r&!e i“tegr&!e system, the quzntum cigenf!!nctions do not possess s.!f?.ce 

Non-separable integrable systems are not as easily tractable, however. Of course 

$ = E  c,lJ2S,/Jx,Jr,I exp{i&(x,)/fi) (7) 
due to the existence of the torus. The equilateral triangle billiard is one such system 
for which we shall carry out a numerical investigation in the following section. 

2.2. Chaotic sysrems 

The representation of an eigenfunction when the classical dynamics is chaotic is still 
a basic open problem. A lot of progress has, however, been achieved in the last few 
years and a reasonable understanding now exists. 

Among the important developments has been the theory of scars initiated by Heller 
[4] and subsequently followed up by Bogomolny [lo] and Berry [ l l ]  to arrive at an 
expression for the averaged intensity, ((r*(r) in terms of the periodic orbits of the 
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underlying classical system. Scarred states in most systems are an exception, however, 
and most wavefunctions are rather complicated and must be interpreted as a superposi- 
tion of several contributions from both periodic and recurrent (those which retum to 
the same point but with different momentum) trajectories. An important clue about 
their nature is provided by the semiclassical expansion of the Green function 

in terms of classical trajectories [12]. The intensity and hence the wavefunction thus 
solely depend on those trajectories which are closed. Unlike the density of states where 
only periodic orbits contribute, recurrent trajectories play an important role in eigen- 
functions. Most of these with comparable actions reside in the neighbourhood of 
periodic orbits. There are others, however, which explore the entire domain of the 
poieniiai but have arbiirariiy iarge iengihs. 

A study of the map on a Poincare surface of section is more revealing. The periodic 
orbit now appears as a fixed point or a k-cycle of the map. For a system with two 
degrees of freedom, an unstable periodic orbit gives rise to a stable manifold, W, and 
an unstable manifold, W,, the points of which tend to the periodic orbit (fixed point) 
for t + a, in the former case and t + --a3 in the latter. For a surface of section defined 
"J ,"PJ,  L L l r  ,y,, p , ,  YLLLIL, P C l U I r "  '.""-p'C.1YU.C "."I, .AJLLc"yv"u" L" L U G  y, - CU.LJI.a-LI, 

line. It is easy to see now that in the neighbourhood of the fixed point there exists 
closed non-periodic orbits of almost the same action. However, there are others as 
well with arbitrarily large lengths. 

l...("-..\*L..(" -,, -",.A..-.. - ~ - : ~ ~ ~ - - - ~ : ~ ~ ~ - - ~ " - - - A " * - . ~ - "  ---- ".....& 

It is thus possible to  represent an individual eigenstate as 

I)=(q) =z @((a:  E c )  (9) 

where ai is the contribution of the ith periodic orbit taking appreciable non-zero 
values in a narrow tube around it (arising from the contributions of the recurrent orbits 
in the neighbourhood which have almost the same action). Its contribution decays 
rapidly thereafter and in the rest of the domain the long recurrent orbits merely provide 
a background fluctuating around zero. In other words, the support of @; lies in a 
narrow tube around the ith periodic orbit. 

Using the representation given by equation (11) and a couple of limiting theorems 
for non-uniform distributions, Biswas ef al[7] have been able to show that P($) does 
have a limiting form which closely approximates a Gaussian. 

This information does indeed have relevance in our study of surface roughness as 
we shall now see. The distribution P($) is evaluated numerically [5-6,9]  by sampling 
points (say 10000) in configuration space and the fraction taking vaiues in smaii 
intervals [I) - A$, $+AI)] is determined. The distribution is then normalized. 

In a sense, therefore, P($) contains information about the lengths of contours 
(which is proportional to the number of points on it) at a given value of $. At $ = 0, 
the length is thus maximum as expected since there are crossings (through the section 
at  $ = 0) from both positive and negative values. At a small non-zero value, however, 
the length (or the fraction of points) instead of reducing sharply registers only a 
marginal decrease, thus suggesting an increase in the number of contours. In other 
words, the surface would be rough and manifests itself as contour splitting. If the 
numerically obtained amplitude distribution has spikes at other values of $ as well, 
a similar conclusion can be arrived at. 
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We have thus used ideas of the semiclassical periodic orbit theory to show that a 
quantum mechanical eigenfunction having a Gaussian amplitude distribution does 
possess surface roughness. 

Plausibility arguments based on the expressions for averaged intensity, (1#r) in 
terms of periodic orbits [lo, 111 also lead to  a similar conclusion. Since the orbits are 
isolated and have an irregular spatial distribution, the variation of (I+(q)p), over a 
small element of area would depend sensitively on the lenghs and stability properties 
of the periodic orbits passing through it as well as the energy, E.. Under favourable 
conditions, the Gaussian decay of a contribution transverse to a periodic orbit could 
be arrested such that neighbouring contributions take over. This would result in minor 
humps and valleys, characteristic of a rough surfac:. 

We substantiate the arguments outlined above with numerical studies in the 
following section. 

3. Numerical studies 

The chief thrust of this section is to provide a visual picture of surface roughness in 
irregular eigenfunctions belonging to chaotic systems and propose a quantitative 
measure as well. First, however, we shall take up the case of equilateral triangle 
discussed in the previous section. 

In order to facilitate the plotting of contours, we choose the origin as a n /3  vertex 
of the 60"-120" rhombus. Half the eigenstates of this system are identical to those of 
the equilateral triangle billiard [13, 141 and are characterized by the eigenvalues 

E,,,+ = 1 6 ~ ~ ( m ~ + n ~ + m n ) / 9 L '  (10) 

and eigenfunctions 

+,,," =sin[2~(m+2n)x/3L] sin[2~my/&L] 

We shall consider the state labelled by the quantum numbers (13.14). Figure 1 shows 
a contour plot at # = 0.4 and 0.8. The regularity and lack of surface roughness seem 

Figure 1. Contour plots of an equilateral triangle eigenfunction at II =0.4 and 0.8 shown 
in the -13 rhombus enclosure. Distortions at the 60" vertices are due to discretization 
errors in the data set. 
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evident. At the 60” vertices, however, there are certain distortions due to interpolation 
errors arising from the lack of an adequate number of points. A magnification of the 
data set reveals that there are regular curves even at these corners. We have taken 
sections at various other heights (values of $) as well but have observed no contour 
splitting. 

A note of caution, however, seems to be in order. Apart from corner distortions, 
spurious effects can occur even in separable integrable systems at values of $ near 
zero due to the discretization process. Thus closed disconnected curves start appearing 
as a single closed loop with pseudo-avoided crossings. The extent to which this can 
be eliminated depends on the efficiency of the contour-plotting routine used but in 
general it is safer to restrict oneself to larger values of I$I. We shall return to this point 
again later. 

Other equilateral triangle eigenfunctions behave in much the same way and the 
number of extrema (measured by taking a section at the lowest possible value of I+() 
on the average is ( m ) ( n ) .  We are currently carrying out further studies to explore the 
possibility of extending this result for general non-separable integrable systems. 

As examples of chaotic systems, we shall consider the Bunimovich stadium billiard 
and a point particle moving freely on a compact ZD surface of constant negative 
curvature. Both these have been studied in great detail [4,6,9, 151 and plots of typical 
eigenfunctions are thus readily available. Figure 2 shows a contour plot of an irregular 
eigenfunction in the stadium. A close inspection in any quadrant reveals the existence 
of several ‘split contours’ indicating the presence of surface roughness. A similar 
phenomenon occurs in other eigenfunctions of this system as well. Figure 3 is a contour 
plot of the 100th wavefunction with positive parity in the hyperbola billiard [15]. The 
presence of surface roughness is quite evident. It also serves to confirm our prediction 
that contour splitting and a Gaussian amplitude distribution occur together (see figure 
9 of [I51 for a plot of P($)). 

Figure 2. Contour plot of a typical irregular eigenfunction of the Bunimovich stadium 
billiard (taken from [16]). Several ‘split contours’ are visible. 

Thus irregular eigenstates in chaotic systems do indeed possess surface roughness 
as well a Gaussian amplitude distribution. The phenomenon, however, seems to occur 
in other non-integrable systems as well. The study of Biswas and Jain [51 on the even 
parity eigenfunctions of the 7r/3 rhombus billiard (a pseudointegrable system) clearly 
shows that irregular states do occur in these non-chaotic systems as well. Figure 4 
shows contour plots of a typical eigenfunction belonging to this system (see caption 
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Figure 3. A similar plot for an eigenfunetian of a point particle moving on a compact 
surface of constant negative curvature (taken from [IS]). The presence of surface roughness 
is evident. The corresponding amplitude distribution is Gaussian (see [15]). 

Y 

X 

Figure 4. Contour plots of an irregular cigenfundion belonging to the v / 3  rhombus billiard 
at $s = ( a )  0.1 and 0.5, ( b )  0.5 and 0.9, (c )  0.9, 1.3 and 1.6. A Contour at a lower height 
splits into seveml at a larger height. 

for more details). Only one quadrant is displayed here since the others are related by 
symmetry. Sections at various heights have been considered and the splitting seems to 
persist even at larger values of $. Moreover the inhomogeneity of the heights of 
individual peaks is also clearly visible. A similar effect can be seen even in certain 
localized (regular) states belonging to chaotic systems (see [4] for a plot). 
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An attempt to quantify these observations so as to get an indicator of the degree 
of irregularity is in general difficult, since a lot of local information which the plots 
provide gets washed out. Nevertheless we shall take a look at variation of the number 
of contours, N ( r ) ,  with height z (=+). For separable integrable systems, the number 
should either remain constant or decrease monotonically with ( $ 1  till the maximum 
value is encountered where it drops to zero. Figure 5 shows a plot of N ( 2 )  for the 
equilateral triangle billiard eigenfunction considered earlier. For smaller values of $, 
there is an increase in the vaiue of N-(zj but thereafter it decreases monotonically and 
smoothly as expected even for this non-separable system. The initial increase is due 
to the spurious phenomenon discussed earlier. Several closed disconnected curves start 
appearing as a single closed loop due to which the number of contours at lower heights 
turns out be smaller than expected. With the increase in height, N ( z )  quickly attains 
its maxima (when all closed curves remain distinct) and thereafter steadily decreases. 
Figure 6 shows a simiiar pioi Cor the even pariiy eigenfunction OF the r j 3  thombus 

I I 
0' 1 2 

* 
Figure 5. The number of contours, N ( r ) ,  plotted as a function o f  the height z (=*) far 
the equilateral triangle eigenfunction considered in figure 1.  The initial increase is due to 
interpolation errors. The fall is smooth even for this non-separable integrable system. 

I 

Figure 6. As in figure 5 for the v /3  rhombus eigenfunction of figure 4. The initial increase 
is sharper and the fail has spikes indicating a rapid splitting of contours. 
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considered earlier. The contours have been counted only in the first quadrant. The 
number increases initially as before, but at a faster rate possibly due to genuine contour 
splittings. At larger values, there is a competition between the disappearance of peaks 
and the splitting of contours both of which seem to have a certain random nature. 
This is manifested by the presence of spikes in the plot of N ( z ) .  

4. Discussions 

The concept of surface roughness provides information complementary to that obtained 
from nodal patterns, amplitude distributions and certain correlation functions. This 
phenomenon is certainly absent in separable integrable systems but needs to be 
conclusively investigated in non-separable integrable systems. For chaotic systems on 
uic UUICI L I ~ I I U ,  cunivur spiiiiirig a i ~  a uaussian ampiiiuue uisinouiion seem io UGGUI~ 

together. Thus surface roughness is yet another manifestation of the underlying classical 
dynamics. The variation of the number of contours with lJll does provide a measure 
of irregularity in quantum states and could be exploited in future studies. 

.LA -.L--L,.-.3 I:..: _ _ ^ _  1 - ,-.~--!.~. .~..~-,:_~~>. >:...:L...- ~ ---..- 

Arknnlulzdm"nt= .__- ""...-"~..."l.l 
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